Analyzing User Preference for Social Image Recommendation

نویسندگان

  • Xianming Liu
  • Min-Hsuan Tsai
  • Thomas S. Huang
چکیده

With the incredibly growing amount of multimedia data shared on the social media platforms, recommender systems have become an important necessity to ease users’ burden on the information overload. In such a scenario, extensive amount of heterogeneous information such as tags, image content, in addition to the user-to-item preferences, is extremely valuable for making effective recommendations. In this paper, we explore a novel hybrid algorithm termed STM, for image recommendation. STM jointly considers the problem of image content analysis with the users’ preferences on the basis of sparse representation. STM is able to tackle the challenges of highly sparse user feedbacks and cold-start problmes in the social network scenario. In addition, our model is based on the classical probabilistic matrix factorization and can be easily extended to incorporate other useful information such as the social relationships. We evaluate our approach with a newly collected 0.3 million social image data set from Flickr. The experimental results demonstrate that sparse topic modeling of the image content leads to more effective recommendations, , with a significant performance gain over the state-of-the-art alternatives.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

User Preference Through Learning User Profile for Ubiquitous Recommendation Systems

As ubiquitous commerce is coming, the ubiquitous recommendation systems utilize collaborative filtering to help users with fast searches for the best suitable items by analyzing the similar preference. However, collaborative filtering may not provide high quality recommendation because it does not consider user’s preference on the attribute, the first rater problem, and the sparsity problem. Th...

متن کامل

A social recommender system based on matrix factorization considering dynamics of user preferences

With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...

متن کامل

Improving the performance of recommender systems in the face of the cold start problem by analyzing user behavior on social network

The goal of recommender system is to provide desired items for users. One of the main challenges affecting the performance of recommendation systems is the cold-start problem that is occurred as a result of lack of information about a user/item. In this article, first we will present an approach, uses social streams such as Twitter to create a behavioral profile, then user profiles are clusteri...

متن کامل

An A3P approach towards Image Privacy policy recommendation on content sharing sites

Popularity of the social media like Facebook, Flickr, LinkedIn and others has increasing everyday due its various features provided. Some of the features are to collaborate with friends, good and friendly user interface to share data and multimedia content at ease. Data uploaded to Social network by the user are at high risk of vulnerability. User uploaded data on the social media does play vit...

متن کامل

A User Preference Classification Method in Information Recommendation System

As information overload problem more serious on the Internet, it becomes an important issue for users to retrieve information effectively. An information recommendation system is helpful for providing user information meet he/she requirements appropriately. However the traditional recommendation concepts usual classify a user into one preference class. It seems unreasonable because a user may p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1604.07044  شماره 

صفحات  -

تاریخ انتشار 2016